959 research outputs found

    The neural basis of responsibility attribution in decision-making

    Get PDF
    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context

    Correlational Dueling Bandits with Application to Clinical Treatment in Large Decision Spaces

    Get PDF
    We consider sequential decision making under uncertainty, where the goal is to optimize over a large decision space using noisy comparative feedback. This problem can be formulated as a K-armed Dueling Bandits problem where K is the total number of decisions. When K is very large, existing dueling bandits algorithms suffer huge cumulative regret before converging on the optimal arm. This paper studies the dueling bandits problem with a large number of arms that exhibit a low-dimensional correlation structure. Our problem is motivated by a clinical decision making process in large decision space. We propose an efficient algorithm CorrDuel which optimizes the exploration/exploitation tradeoff in this large decision space of clinical treatments. More broadly, our approach can be applied to other sequential decision problems with large and structured decision spaces. We derive regret bounds, and evaluate performance in simulation experiments as well as on a live clinical trial of therapeutic spinal cord stimulation. To our knowledge, this marks the first time an online learning algorithm was applied towards spinal cord injury treatments. Our experimental results show the effectiveness and efficiency of our approach

    Preference-Based Learning for Exoskeleton Gait Optimization

    Get PDF
    This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton’s walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users

    Multi-dueling Bandits with Dependent Arms

    Get PDF
    The dueling bandits problem is an online learning framework for learning from pairwise preference feedback, and is particularly well-suited for modeling settings that elicit subjective or implicit human feedback. In this paper, we study the problem of multi-dueling bandits with dependent arms, which extends the original dueling bandits setting by simultaneously dueling multiple arms as well as modeling dependencies between arms. These extensions capture key characteristics found in many real-world applications, and allow for the opportunity to develop significantly more efficient algorithms than were possible in the original setting. We propose the selfsparring algorithm, which reduces the multi-dueling bandits problem to a conventional bandit setting that can be solved using a stochastic bandit algorithm such as Thompson Sampling, and can naturally model dependencies using a Gaussian process prior. We present a no-regret analysis for multi-dueling setting, and demonstrate the effectiveness of our algorithm empirically on a wide range of simulation settings

    Stagewise Safe Bayesian Optimization with Gaussian Processes

    Get PDF
    Enforcing safety is a key aspect of many problems pertaining to sequential decision making under uncertainty, which require the decisions made at every step to be both informative of the optimal decision and also safe. For example, we value both efficacy and comfort in medical therapy, and efficiency and safety in robotic control. We consider this problem of optimizing an unknown utility function with absolute feedback or preference feedback subject to unknown safety constraints. We develop an efficient safe Bayesian optimization algorithm, StageOpt, that separates safe region expansion and utility function maximization into two distinct stages. Compared to existing approaches which interleave between expansion and optimization, we show that StageOpt is more efficient and naturally applicable to a broader class of problems. We provide theoretical guarantees for both the satisfaction of safety constraints as well as convergence to the optimal utility value. We evaluate StageOpt on both a variety of synthetic experiments, as well as in clinical practice. We demonstrate that StageOpt is more effective than existing safe optimization approaches, and is able to safely and effectively optimize spinal cord stimulation therapy in our clinical experiments
    • …
    corecore